
Tree Isomorphism and Related Problems

� Tree isomorphism
� Subtree isomorphism
� Largest common subgraph
� Smallest common supergraph

under different notions of

� tree

– rooted or unroteed trees
– ordered or unordered trees
– evolutionary or phylogenetic trees

� isomorphism (embedding relation)

– graph isomorphism
– topological embedding
– minor containment

� subgraph

– tree
– connected graph
– forest



Tree Isomorphism and Related Problems

Let us recall the different embedding relations, from the most
restrictive to the most general one.

� There is a subgraph isomorphism of S into T if there is a
subgraph of T isomorphic to S, that is, if the nodes of S can be
mapped to nodes of T in such a way that the edges of S map to
edges in T .

� There is a topological embedding of S into T if a tree isomorphic
to S can be obtained from T by a series of contractions of simple
paths, that is, if the nodes of S can be mapped to nodes of T in
such a way that the edges of S map to node-disjoint paths in T .

� There is a minor embedding of S into T if a tree isomorphic to S
can be obtained from T by a series of node and edge deletions
and edge contractions.



Tree Isomorphism and Related Problems

Tree isomorphism is the basis of naı̈ve solutions to the more general
problems of subtree isomorphism, largest common subtree, and
perhaps also smallest common supertree.

� A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

The following algorithm determines whether two rooted unordered
trees T1 and T2 with n nodes are isomorphic in O

�
n � time.

The algorithm assigns integers to the nodes of the two trees,
starting with the leaves and working up towards the roots, in such a
way that the trees are isomorphic if and only if their roots are
assigned the same integer.



Tree Isomorphism and Related Problems

1: procedure isomorphic
�
T1 � T2 �

2: assign level numbers to all nodes of T1 and T2

3: assign to all leaves of T1 and T2 the integer 0
4: let L1 be a list of the leaves of T1 at level 0
5: let L2 be a list of the leaves of T2 at level 0
6: for all levels i starting from 1 do
7: ��� assign integers to all nodes at level i ���
8: if the roots of T1 and T2 are assigned the same integer then
9: T1 and T2 are isomorphic

10: else
11: T1 and T2 are not isomorphic
12: end procedure



Tree Isomorphism and Related Problems

��� assign integers to all nodes at level i �����
1: for all nodes v on list L1 do
2: assign to the next component of the tuple associated with the

parent of v the integer assigned to v
3: let S1 be the sequence of tuples created for the nonleaves of T1

on level i
4: let S2 be the corresponding sequence of tuples of T2

5: bucket sort S1

6: bucket sort S2

7: if S1 	
 S2 then
8: T1 and T2 are not isomorphic
9: else

10: let L1 be an empty list of nodes
11: for all k from 1 to the number of distinct tuples on S1 do
12: for all nodes v of T1 on level i represented by the kth

distinct tuple on S1 do
13: assign to node v the integer k
14: append node v to L1

15: append to the front of L1 all leaves of T1 on level i
16: let L2 be the corresponding list of nodes of T2



Tree Isomorphism and Related Problems

Numbers assigned by the tree isomorphism algorithm.

1 � 1 � 2 


1 � 0 � 0 � 0 


0 � 0 
 0 � 0 
 0 � 0 


2 � 0 � 1 � 1 


1 � 0 � 0 


0 � 0 
 0 � 0 


0 � 0 
 1 � 0 � 0 


0 � 0 
 0 � 0 


1 � 1 � 2 


2 � 0 � 1 � 1 


1 � 0 � 0 


0 � 0 
 0 � 0 


1 � 0 � 0 


0 � 0 
 0 � 0 


0 � 0 


1 � 0 � 0 � 0 


0 � 0 
 0 � 0 
 0 � 0 




Tree Isomorphism and Related Problems

A mapping establishes a one-to-one correspondence between the
nodes of two ordered trees which preserves the order of siblings and
ancestors. Mappings were introduced in

� K.-C. Tai. The tree-to-tree correction problem. J. ACM,
26(3):422–433, 1979.

in order to describe how a sequence of edit operations transforms a
tree into another one. A mapping from a tree T1 to a tree T2 is a set
M of ordered pairs of integers

�
i � j � , 1 � i � n1, 1 � j � n2 such that

� i1 
 i2 if, and only if, j1 
 j2� t1 � i1 � is to the left of t1 � i2 � if, and only if, t2 � j1 � is to the left of t2 � j2 �� t1 � i1 � is an ancestor of t1 � i2 � if, and only if, t2 � j1 � is an ancestor of
t2 � j2 �

for all
�
i1 � j1 � � � i2 � j2 ��� M, where t � i � denotes the node of T whose

position in the postorder traversal of T is i.

A mapping from a tree T1 to a tree T2 describes the edit operations
that allow to transform T1 into T2. A node t1 � i � with no pair

�
i � j ��� M

is deleted from T1, a pair
�
i � j ��� M indicates the substitution of node

t1 � i � by node t2 � j � , and a node t2 � j � with no pair
�
i � j ��� M is inserted

into T2.



Tree Isomorphism and Related Problems

Top-down subtree isomorphism was introduced in

� S. M. Selkow. The tree-to-tree editing problem. Inform. Process.
Lett., 6(6):184–186, 1977.

� W. Yang. Identifying syntactic differences between two programs.
Software—Practice and Experience, 21(7):739–755, 1991.

where an algorithm was given to compute the distance between two
trees T1 and T2 in O

�
n1n2 � time. In a top-down mapping, the parents

of nodes in the mapping are also in the mapping.

A mapping M from a tree T1 to a tree T2 is top-down if it satisfies the
following condition:

� if
�
i � j ��� M then

�
par

�
i � � par

�
j ����� M

for all i � j such that t1 � i � and t2 � j � are not the root of T1 and T2,
respectively, where par

�
i � denotes the postorder number of the

parent of node t � i � .
The top-down distance from tree T1 to tree T2 is the cost of a
least-cost top-down mapping between T1 and T2.



Tree Isomorphism and Related Problems

Consider first the dynamic programming algorithm introduced in

� D. S. Hirschberg. A linear space algorithm for computing
maximal common subsequences. Commun. ACM,
18(6):341–343, 1975.

which is based on the observation that the longest common
subsequence of the two sequences � a1 ��������� am � and � b1 ��������� bn � can
be computed from the three longest common subsequences of

� � a1 ��������� am � and � b1 ��������� bn � 1 � (deletion)
� � a1 ��������� am � 1 � and � b1 ��������� bn � (insertion)
� � a1 ��������� am � 1 � and � b1 ��������� bn � 1 � (substitution)

1: procedure lcs
� � a1 ��������� am � � � b1 ��������� bn � �

2: let M � i � 0 � be 0 for all i from 0 to m
3: let M � 0 � j � be 0 for all j from 0 to n
4: for all i from 1 to m do
5: for all j from 1 to n do
6: let W � i � j � be � ai


 b j �
7: let M � i � j � be

max
�
M � i � j � 1 � � M � i � 1 � j � � M � i � 1 � j � 1 ��� W � i � j � �

8: return M �m � n �
9: end procedure



Tree Isomorphism and Related Problems

In the longest common subsequence algorithm,

� Wi � j is either 0 or 1, depending on whether ai and b j are identical
elements

� Mi � j denotes the length of a longest common subsequence of
the two prefixes � a1 ��������� ai � and � b1 ��������� b j � .

Sequences can be seen as ordered trees whose height is 2. The
longest common subsequence algorithm can be generalized to find
the number of pairs in a largest matching of two trees, by extending
the meaning of the weight matrix W .

� Wi � j denotes the number of pairs in a largest matching of the
subtrees rooted at ai and b j.� Mi � j denotes the number of pairs in a largest matching between
the two forests of trees rooted at a1 ��������� ai and b1 ��������� b j.



Tree Isomorphism and Related Problems

If the roots of A and B contain distinct elements, then the two trees
for not match at all. If the roots contain identical elements, then the
algorithm recursively finds the number of pairs in a largest matching
between first-level subtrees of A and B.

1: procedure match
�
A � B �

2: if root
�
A � and root

�
B � contain distinct elements then

3: return 0
4: else
5: let m be the number of first-level subtrees of A
6: let n be the number of first-level subtrees of B
7: let M � i � 0 � be 0 for all i from 0 to m
8: let M � 0 � j � be 0 for all j from 0 to n
9: for all i from 1 to m do

10: for all j from 1 to n do
11: let Ai be the ith first-level subtree of A
12: let B j be the jth first-level subtree of B
13: let W � i � j � be match

�
Ai � B j �

14: let M � i � j � be
max

�
M � i � j � 1 � � M � i � 1 � j � � M � i � 1 � j � 1 ��� W � i � j � �

15: return M �m � n ��� 1
16: end procedure

In order to account for the fact that the roots of the trees A and B
match, 1 is added to M �m � n � on line 15.



Tree Isomorphism and Related Problems

Bottom-up subtree isomorphism was introduced in

� G. Valiente. Simple and efficient subtree isomorphism. Technical
Report LSI-00-72-R, Technical University of Catalonia,
Department of Software, 2000.

� G. Valiente. Simple and efficient tree comparison. Technical
Report LSI-01-1-R, Technical University of Catalonia,
Department of Software, 2001.

where an algorithm was given to compute the distance between two
trees T1 and T2 in expected O

�
n1 � n2 � time. In a bottom-up

mapping, the children of nodes in the mapping are also in the
mapping.

A mapping M from a tree T1 to a tree T2 is bottom-up if it satisfies
the following condition:

� if
�
i � j ��� M then

�
i1 � j1 � ��������� � ik � jk ��� M

where t1 � i1 � ��������� t1 � ik � are the children of node t1 � i � and
t2 � j1 � ��������� t2 � jk � are the children of node t2 � j � .
The bottom-up distance from tree T1 to tree T2 is the cost of a
least-cost bottom-up mapping between T1 and T2.



Tree Isomorphism and Related Problems

The algorithm is based on a reduction of the tree pattern matching
problem to the extension to forests of the common subexpression
problem: represent a rooted tree in a maximally compact form as a
directed acyclic graph, where common (isomorphic) subtrees are
factored and shared.

The common subexpression problem was introduced in

� P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the
common subexpression problem. J. ACM, 27(4):758–771, 1980.

� P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations on
the common subexpression problem. In Automata, Languages,
and Programming, volume 443 of Lecture Notes in Computer
Science, pages 220–234. Springer-Verlag, 1990.

A rooted, oriented, random tree of size n has a compacted form of
expected size O

�
n �! logn � .

� P. Flajolet and J.-M. Steyaert. A complexity calculus for recursive
tree algorithms. Math. Syst. Theory, 19(4):301–331, 1987.



Tree Isomorphism and Related Problems

a

13

a

10

a

8

c

2

a

7

c

2

a

4

c

2

e

1

a

7

c

2

a

4

c

2

e

1

a

12

a

11

a

6

e

1

a

4

e

1

c

2

a

9

a

6

a

4

c

2

e

1

e

1

c

2

a

5

a

3

c

2

e
1

c
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

a
13



Tree Isomorphism and Related Problems

The algorithm assigns integers to the nodes of a forest, in such a
way that any two nodes have the same integer assigned if, and only
if, the subtrees rooted at them are isomorphic.

The set of rooted subtrees of the forest is thus partitioned into
isomorphism equivalence classes.

The algorithm improves previous algorithms for partitioning a rooted
tree into isomorphism equivalence classes.

� R. Grossi. On finding common subtrees. Theor. Comput. Sci.,
108(2):345–356, 1993.

� Y. Dinitz, A. Itai, and M. Rodeh. On an algorithm of
Zemlyachenko for subtree isomorphism. Inform. Process. Lett.,
70(3):141–146, 1999.



Tree Isomorphism and Related Problems

1: procedure isomorphism
�
F �

2: let q be an empty queue of nodes
3: for all nodes v in forest F do
4: let parent � v � be the parent of node v
5: set size � v � to one
6: let children � v � be the degree of node v
7: if children � v � 
 0 then
8: enqueue node v into q
9: set count to zero

10: repeat
11: dequeue node v from q
12: ��� assign integer to subtree rooted at node v ���
13: if node v is not the root of a tree in the forest then
14: increment size � parent � v ��� by size � v �
15: decrement children � parent � v ��� by one
16: if children � parent � v ��� 
 0 then
17: enqueue node parent � v � into q
18: until the queue q is empty
19: end procedure



Tree Isomorphism and Related Problems

��� assign integer to subtree rooted at node v �����
1: let D be a dictionary of lists of integers
2: let L be an empty list of integers
3: for all edges

�
v � w � in the forest do

4: append integer �w � to L
5: bucket sort L
6: insert label � v � at front of L
7: lookup L in dictionary D
8: if found then
9: set integer � v � to the value found

10: else
11: increment count by one
12: insert � L � count � in dictionary D
13: set integer � v � to count



Tree Isomorphism and Related Problems

The algorithm allows to solve several tree comparison problems in
linear time

Subtree isomorphism Find all the subtrees in a given forest which
are isomorphic to the subtree rooted at a given node

Largest common subtree Find all the largest common subtrees in
a given forest. More in general, find all the k-th largest or the k-th
smallest common subtrees in the given forest.

Most often repeated subtree Find all the subtrees in a given
forest that are repeated most often. More in general, find in the
given forest all the k-th most often or the k-th least often
repeated subtrees

with the help of a simple data structure, which can be sorted in
linear time using bucket sort according to different criteria.


